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Third mode of science

“During its spectacular rise, the computational has joined the theoretical and experimental 
branches of science, and is rapidly approaching its two older sisters in importance and 
intellectual respectability.”
   Peter D Lax, J. Stat. Phys. 43, 749 (1986)
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The quantum Toolbox
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The Theory of Everything
“The underlying physical laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus completely known, 
and the difficulty is only that the application of these laws leads to equations 
much too complicated to be soluble.”

   P.A.M. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Why?

Each electron interacts with the nucleus
Every electron also interacts with every other electron. 

In Lithium (Z=3) there are 3 e-e interactions to consider.
In Boron (Z=5) there are 10 e-e interactions to consider.
In Iron (Z=26) there are 325 e-e interactions to consider.
In Uranium (Z=92) there are 4186 e-e interactions to consider.

.. and that's just isolated atoms.  We need to model crystals and molecules 
containing hundreds of atoms.

QM of multi-electron atoms still too complex to solve on
Powerful supercomputers in 2019 (and forseeable future)..
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Approximate quantum mechanics

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn 
"for  his development of the density-functional theory"  and John A. Pople 
"for his development of computational methods in quantum chemistry".

Key developments dating back to 1960s and 70s were  approximate quantum 
theories which were nevertheless “good enough”.  

Density Functional Theory- Local Density Approximation

Hartree-Fock approximation, MP2, CI, CCSD(S,T)

Walter Kohn 1923-2016 John Pople 1925-2004



Department
Of PhysicsDensity Functional TheoryDensity Functional Theory  

Modified from Mattsson et al., (2005) 
Modeling. Simul. Mater. Sci. Eng. 13, R1.

Approximate e-e interaction with 
•local density approximation (LDA)
•generalized gradient approximation (GGA)
•Hybrids, DMFT, GW, … 
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Self-consistent solution required.

V H ( r⃗ )=∫ d r⃗ '
n( r⃗ ' )
|⃗r− r⃗ '|



Department
Of PhysicsLDA and GGAs

V
xc
[n ]≈V

xc
(n( r⃗ ),∇ n( r⃗ ))

LDA

GGAs
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xc
[n ]

δn( r⃗ )

V
xc
[n ]≈V

xc
(n( r⃗ ))

Parameterized from uniform electron gas
•Cohesive energies ~ 1eV too large 
•lattice parameters and bond lengths -1-2%
•Band gaps too small
•Hund's rule for open shells not always obeyed
•Van der Waals forces not included 

Parameterized from non-uniform electron gas and atoms
•Cohesive energies error of ~ 100 meV
•lattice parameters and bond lengths -1-2%
•Band gaps too small
•Hund's rule for open shells not always obeyed
•Van der Waals forces not included

e.g. PBE, PW91, BLYP, ...
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V
xc
[n]≈V

xc
(n( r⃗ ) ,∇ n( r⃗ ), τ s( r⃗ ))Meta-GGA

Hybrids

τ s( r⃗ )=
1
2∑m k

|∇ ϕmk ( r⃗ )|
2

Added dependency on kinetic-energy density
•Early forms (TPSS) not fully self-consistent.
•SCAN & rSCAN fitted to exact results and QMC. 
•lattice parameter error ~ 0.007A 
•Self-interaction error still present (Hund's rule not always obeyed) 
Cohesive energies accurate to ~ 30 meV

•Van der Waals forces still not included 

Linear admixture of DFT and Hartree-Fock exchange
•Cohesive energies and lattice parameters slightly better than GGAs
•Partially self-inteaction corrected – band gaps improved 
•Hund's rule for open shells  obeyed
•Van der Waals forces not included

e.g. PBE0, B3LYP, HSE06...

E
xc

PBE0
≡
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HF
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Pseudopotential for ionic interactions

 “All electron” method but 
frozen core.

  Retain chemically relevant

valence electrons
 Good scaling/large systems 

Plane-wave basis set
 Well-adapted for crystalline

and solid/liquid modelling
 Systematic control of basis 

set convergence
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Valence orbitals determined by DFT calculation on isolated atom
Pseudization finds potential which retains large-r form
N.B. use relativistic atom solver to include relativity in plane-wave calc.
 - correct treatment of heavy atoms. 
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PAW is extension of pseudopotential method.
Restores atomic nodal form of plane-wave orbitals near nucleus
Sometimes called “all-electron”, but core electrons not included!

andand
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The Delta Project

● Physical Scientists approach – benchmark different DFT codes
● Test set is the crystalline elemental solids.
● Define per-element measure “delta” in meV.
● VASP and GPAW codes tested against reference DFT implementation 

– FP-LAPW method in Wien2K code
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Ionic bonding in NaCl

Charge transfer from Na to Cl

Unlike Si, no build up of charge between atoms
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Covalent bonding in silicon

Covalent bonding arises from build up of -ve charge 
between +ve nuclei.

Chemical bond is emergent property of electron-ion 
system

Not merely qualitative description – can compute bond 
and cohesive energy.
(Ecoh=5.45 eV; expt 4.62 eV)
Lattice Parameter a0=0.549nm (0.5431nm)
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Metallic bonding in aluminium

Valence electrons are spread out – metallic 
state.

Calculation shows no band gap; correctly 
predicts Al is metallic.
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No van Der Waals Bonding

LDA, GGA, m-GGA and hybrids do 
not include non-bonded van-der 
Waals interactions.
3
Example: Graphite

Non-polar molecular crystals can be 
completely unbound!

A variety of semi-empirical correction 
schemes exist to add missing 
interaction.
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Strictly, DFT has no basis to describe 
excited states. However unoccupied K-S 
states do resemble single-electron 
excitations. It is predictive for some 
spectroscopies, ignoring band-gap error:

● UV-Vis (but not excitons)
● EELS and Xanes

But some excitations have no K-S 
counterpart.

● Magnons
● Excitons

and a higher level of theory treatment is 
required. (eg Bethe-Salpeter)



From bands to properties
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Ĥ Ψ i=ϵiΨ i
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Etot= 〈Ψ∣Ĥ∣Ψ 〉=EBS+E I−I−Ee−e
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Etot=EBS+E I− I−Ee−e
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P=−
dEtot

dV

F j=−
dEtot

d R j

Φi , j=
d2 Etot

d Ri d R j

αij=
d2 Etot

d Ei d E j

Etot=EBS+E I− I−Ee−e
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P=−
dEtot

dV

F j=−
dEtot

d
R j

Φi , j=
d2 Etot

d Ri d R j

αij=
d2 Etot

d Ei d E j

Im ,i , j
raman∝

d3 Etot

d Ei d E j d Qm

χi , j , k
(2)

∝
d3 Etot

d Ei d E j d E j

δω
ω ∼

d3 Etot

d Ri d R j d Rk

Etot=EBS+E I− I−Ee−e
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E(x1 , y1 , z1 , ...)≤E0

E global≤E local

iterative downhill optimization methods can find local minima
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The Hellman-Feynman Theorem gives forces if ground state known

Fi=−⟨Ψ0|
d E
d xi

|Ψ0 ⟩

Can move atoms in response to 
computed forces.

Apply machinery of optimization 
theory: 
E.g. quasi-Newton methods 
(BFGS) to find equilibrium crystal 
structure.
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DFT Simulation Codes
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Electronic Structure
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•Accurate prediction of:
•Geometry of defects
•Band Gap
•Formation Energies

Clark, Zunger, et al., PRB 81, 115311 (2010)
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Crystal Structure
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AIRSS: Prediction of Crystal Structures 

methane polyethane graphane
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Predicting Structure
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Molecular Dynamics
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With forces calculated from DFT
Can also calculate dynamics:
● Molecular dynamics – time evolution
● Lattice dynamics - spectroscopy

r t t =r t v t  t
1
2

at  t 2

v (t+δ t)=v(t)+
1
2
[a (t)+a(t+δ t)]δ t

at t =
1
m

F t t 
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Li, Probert, Alavi, Michaelides, PRL 104, 066102 (2010)
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Fast-ion conduction in  LiBH4

 4
4

< 390 K
Orthorhombic (Pnma)

> 390 K
Hexagonal (P63/mmc)

Disordered
Superionic conductivity

> 560 K: liquid
> 650 K: decomposition
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• Miwa, K. et al., 2004. First-principles study on lithium borohydride LiBH4. Physical 
Review B, 69(24), 245120. 

“The finite temperature effects are probably crucial to study the structural properties in this 
phase.”

• Tekin, A. et al., 2010. First-Principles Determination of the Ground-State Structure of 
LiBH4. PRL, 104(21), p.215501.

• Łodziana, Z. & Vegge, T., 2004. Structural Stability of Complex Hydrides: LiBH4 Revisited. 
PRL, 93(14), p.145501.

“At finite temperatures a stable crystalline structure requires all phonon frequencies to be 
positive definite: ω2 >0. ... a significant part of the phonon spectrum for the P63mc phase 
is imaginary—which means that this structure is unstable at T>0K. This surprising result, 
considering the experimental predictions ... ”

•  Łodziana, Z. & Vegge, T., 2006. Łodziana and Vegge Reply: Physical Review Letters, 
97(11), p.119602. 

“A system which is unstable within the harmonic approach can be stabilized by entropy, in 
which case it must posses more than dynamical disorder.”

unsuccessful attempts to model high-temperature 
phase by optimisation and lattice dynamics: 
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December 5, 2011 46

 Code: CP2K (out-of-the-box)

 Born-Oppenheimer molecular dynamics in 
isokinetic ensemble (Gaussian thermostat)

 Forces evaluated by DFT using the QUICKSTEP 
method

 Supercell: 288 atoms (48 formula units)

 Time step: 0.5 fs

 Run lengths 20-30 ps after equilibration

 PBE exchange-correlation functional

 Dual basis set (Gaussian DZ orbitals & plane 
waves up to 280 Ry) and Goedecker 
pseudopotentials are used
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4
7

BH4 rotational disorder:

298K

473K
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4
8

Li dynamical disorder:

BH4 rotational disorder:
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December 5, 2011 50

A/C impedance measurements Li-7 NMR measurements

Motoaki Matsuo et al., Applied Physics Letters 91, 224103 (2007).

At 535K: D
Li
 = 2.28  10∙ -6 cm2/sσ = 0.139 S/cm

n

l
D

2


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Calculating diffusion by AIMD

December 5, 2011 51

dt

trd

n
D

)(1
2



Diffusion coefficient calculated by...

Einstein-Sutherland equation Green-Kubo formula





0

)()0(
2

tvvdt
n

D

Lennard-Jonesium
(mimicking liquid Argon)

LiBH4 at 535 K

Fast diffusion

Diffusion by ion jumps
(rare events)

which are often 
followed by a jump back 
to the original position

Limits of AIMD: diffusion in fluids with D > 10-5 cm2/s
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 5
2

 An external field Fe is applied that couples to a fictitious 
atomic property (“colour”, ci):

 The (fictitious) field and its induced response are related by 
(real) transport coefficients:

 NEMD functionality implemented in CASTEP and CP2K

 ab initio nature of the method allows mechanism discovery
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Results – F
e
 = 0.05 eV/Å

December 5, 2011 53

D
Li
 = 1.34·10-6  cm2/s

(Measured: D
Li
 = 2.28·10-6  cm2/s) 

D
Li 

= 5.82·10-6 cm2/s 

dt

trd

n
D

)(1
2

 vs( )Compare:
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F
e

F
e

Maximum field strength in linear regime: 0.05 eV/Å

D(110)/(001) = 5.8x10-6/1.3x10-6 cm2s-1

D(expt, avg.) = 2.3x10-6 cm2s-1



Department
Of Physics

Diffusion Pathway

 5
5

hopping is via jumps from a lattice site into an empty interstitial site (2 & 3),
 and from there on to another lattice site (4).

Inspection of the NEMD trajectory:

P.C. Aeberhard, S. Williams, D. Evans, K. Refson, and W.I.F. David, Physical Review 
Letters 108, 095901 (2012).



Vibrations, Phonons and Spectroscopy
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Vibrational Spectroscopy

Φκ 'α '
κα

(0,R)=
∂

2 E
∂ rκα∂rκ ' α '
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 VibrationalSpectroscopy

Φκ ' α '
κα

(0, R)=
∂

2 E
∂r κα∂ r κ ' α '

  Lattice dynamics from first principles

D

Dκ ' α '
κ α (q)=∫Φκ ' α '

κ α (0, R)e iq . R d R

Dκ ' α '
κ α (q)ϵmκ α=ωm

2 ϵmκα
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 The Supercell Method

Build large supercell model

Displace atom I by δx
κα

Repeat for all i

Optimize Geometry: F
κα

=0

Compute all Forces  δFλβ 

Φκα λβ=−
δ Fλβ

δ xκα

Dλβ

κ α
(q)=∫Φλ β

κ α
(0 , R)e i q . Rd R

Dλβ

κ α
(q)ϵmκα=ωm

2
ϵmλβ

Repeat for any q

End

Expensive DFT calculation
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 The Nondiagonal Supercell Method

Displace atom I by δx
κα

Repeat for all i

Optimize Geometry: F
κα

=0

Compute all Forces  δFλβ 

D (qk)καλ β=−
δ Fλβ

δ xκα

Dλβ

κ α
(q)=∫Φλ β

κ α
(0 , R)e i q . Rd R

Dλβ

κ α
(q)ϵmκα=ωm

2
ϵmλβ

Repeat for any q

End

Build skew supercell
Commensurate with q_k

Repeat for all qk
On regular grid Expensive DFT calculation
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Orientationally averaged infrared absorptivity

I m=∣∑
 ,b

1

M
Z ,a ,b

* um , ,b∣
2

Raman cross section

I raman
m

∝∣e i⋅A
m
⋅es∣

2 1
m


1

expℏm /kB T −1
1

A , 
m
=∑

 , 

∂
3 E

∂ ℇ∂ ℇ∂u ,

um,  ,=∑
 ,

∂

∂u ,

um, ,

Inelastic neutron cross section

Sn
m=∫d Q∑



 〈 Q⋅um, 
2n

n !
exp−Q⋅um, 

2
〉

Spectral response to light depends on response of 
electrons; for neutrons only nuclei.
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Vibrational spectroscopy of C60

• Above 260K takes Fm3m structure 
with dynamical orientational disorder

• m3m point group lower than Ih 
molecular symmetry

• Selection rules very different from gas-
phase.

• Intramolecular modes and factor group 
splitting seen.

• Try ordered Fm3 model for crystal 
spectral calculation.

Parker et al, PCCP 13, 7780 (2011)
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GGA Raman spectrum of C60 
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C60 INS -Tosca
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GGA infrared spectrum of C60 



Thermoelectric Heat Recovery



TiNiSn-based Half-Heusler Alloys
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The Half-Heusler Crystal Structure

● Chemical Formula ABC
● A, B, C are elemental metallic 

elements
● Closed-shell “18-electron” 

results in insulating band-gap.
● TiNiSn with excess Ni or Cu 

show high themoelectic ZT.
● Investigate phonon origin of low 

thermal conductivity.
● MARI experiments performed 

on on Ti/Zr/Hf NiSn
● MARI experiments on excess 

Ni and Cu in TiNiSn
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Effect of Excess Ni in TiNiSn



MARI TiNiSn, TiNi1.1Sn, TiNiCu0.125Sn

71



Neutron Weighted Phonon DOS
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Rattler mode in thermoelectric Na0.8CoO2        

                                      

zT=
S2 T σ
κ

Thermoelectric 
“figure of merit”

Roger, M., et al., Patterning of sodium ions and control of 
electrons in sodium cobaltate. Nature 445, 631 (2007)

“Square Phase” Na ordering at 150K

Inelastic X-Ray spectrum
measured at ESRF
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Ab initio Lattice Dynamics 
of Square Phase Na0.8CoO2

D. Voneshen et al.,Suppression of thermal conductivity by rattling modes in 
thermoelectric sodium cobaltate. Nature Materials 12, 1028 (2013) 
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Thermal Diffuse
 Scattering in Titanite
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Motivation

T. Malcherek et al., J. Appl. Cryst. 34 (2001), 108.
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Experiment

SXD at ISIS BW5 at DESY
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Diffuse scattering

Neutron

X-Ray
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Phonons and diffraction

F j ( q⃗ )=∑
s

f s

√μs

⋅e
−M s⋅( q⃗⋅⃗e q⃗ , j ,s )⋅e

−i q⃗⋅⃗r s

I TDS=
ℏ N I e

2
∑

j

1
ωq⃗ , j

coth(
ℏωq⃗ , j

k BT )∣F j ( q⃗ )∣2

R. Xu and T. C. Chiang, Z. Kristallogr. 220 (2005), 1009.
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Comparison with data

Obs

Obs

DFT

DFT

Neutron

X-Ray
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